45 research outputs found

    Optimized protocols for duplex quantum transduction

    Full text link
    Quantum transducers convert quantum signals through hybrid interfaces of physical platforms in quantum networks. Modeled as quantum communication channels, performance of unidirectional quantum transduction can be measured by the quantum channel capacity. However, characterizing performance of quantum transducers used for duplex quantum transduction where signals are converted bidirectionally remains an open question. Here, we propose rate regions to characterize the performance of duplex quantum transduction. Using this tool, we find that quantum transducers optimized for simultaneous duplex transduction can outperform strategies based on the standard protocol of time-shared unidirectional transduction. Integrated over the frequency domain, we demonstrate that rate region can also characterize quantum transducers with finite bandwidth

    Analysis of arbitrary superconducting quantum circuits accompanied by a Python package: SQcircuit

    Get PDF
    Superconducting quantum circuits are a promising hardware platform for realizing a fault-tolerant quantum computer. Accelerating progress in this field of research demands general approaches and computational tools to analyze and design more complex superconducting circuits. We develop a framework to systematically construct a superconducting quantum circuit's quantized Hamiltonian from its physical description. As is often the case with quantum descriptions of multicoordinate systems, the complexity rises rapidly with the number of variables. Therefore, we introduce a set of coordinate transformations with which we can find bases to diagonalize the Hamiltonian efficiently. Furthermore, we broaden our framework's scope to calculate the circuit's key properties required for optimizing and discovering novel qubits. We implement the methods described in this work in an open-source Python package SQcircuit. In this manuscript, we introduce the reader to the SQcircuit environment and functionality. We show through a series of examples how to analyze a number of interesting quantum circuits and obtain features such as the spectrum, coherence times, transition matrix elements, coupling operators, and the phase coordinate representation of eigenfunctions.Comment: 23 pages, 6 figures. Accompanying SQcircuit package on https://sqcircuit.org

    Measurement and correlation of liquid - Liquid equilibria of three imidazolium ionic liquids with acetone and cyclohexane

    Get PDF
    Ionic liquids (ILs) can be recycled as extractants for their low vapor pressure and volatility. More and more applications are applied to the separation of industrial organic matter. The industrial production of ILs has gradually been realized, which also widens the way for the application of ILs. In this work, the liquid-liquid extraction of cyclohexane-acetone azeotropic mixture with different ILs {1-butyl-3-methylimidazolium bis(trifluormethylsulfonyl), 1-butyl-3-methylimidazolium trifluoromethansulfonate and 1-butyl-3-methylimidazolium dicyanamide} is studied. The extraction mechanism is discussed based on the molecular scale. The relationship between hydrogen bond donor and acceptor between ILs and acetone is analyzed by COSMO-SAC. The interaction between molecules is optimized and calculated by Materials Studio 7.0. The extraction ability of ILs is analyzed by radial distribution function, and the experimental results are verified. The liquid-liquid equilibrium test is carried out at 298.15 K. Distribution and selectivity are indices used to judge the extraction efficiency of ILs. The NRTL model and UNIQUAC model are adopted to correlate the liquid-liquid equilibrium data. The results show that all of the two models can well correlate the experimental.This work is supported by the National Natural Science Foundation of China (No. 21776145), National Natural Science Foundation of China (No. 21676152)

    Quantum state preparation, tomography, and entanglement of mechanical oscillators

    Full text link
    Precisely engineered mechanical oscillators keep time, filter signals, and sense motion, making them an indispensable part of today's technological landscape. These unique capabilities motivate bringing mechanical devices into the quantum domain by interfacing them with engineered quantum circuits. Proposals to combine microwave-frequency mechanical resonators with superconducting devices suggest the possibility of powerful quantum acoustic processors. Meanwhile, experiments in several mechanical systems have demonstrated quantum state control and readout, phonon number resolution, and phonon-mediated qubit-qubit interactions. Currently, these acoustic platforms lack processors capable of controlling multiple mechanical oscillators' quantum states with a single qubit, and the rapid quantum non-demolition measurements of mechanical states needed for error correction. Here we use a superconducting qubit to control and read out the quantum state of a pair of nanomechanical resonators. Our device is capable of fast qubit-mechanics swap operations, which we use to deterministically manipulate the mechanical states. By placing the qubit into the strong dispersive regime with both mechanical resonators simultaneously, we determine the resonators' phonon number distributions via Ramsey measurements. Finally, we present quantum tomography of the prepared nonclassical and entangled mechanical states. Our result represents a concrete step toward feedback-based operation of a quantum acoustic processor.Comment: 13 pages, 4+5 figure

    Quantum dynamics of a few-photon parametric oscillator

    Full text link
    Modulating the frequency of a harmonic oscillator at nearly twice its natural frequency leads to amplification and self-oscillation. Above the oscillation threshold, the field settles into a coherent oscillating state with a well-defined phase of either 00 or π\pi. We demonstrate a quantum parametric oscillator operating at microwave frequencies and drive it into oscillating states containing only a few photons. The small number of photons present in the system and the coherent nature of the nonlinearity prevents the environment from learning the randomly chosen phase of the oscillator. This allows the system to oscillate briefly in a quantum superposition of both phases at once - effectively generating a nonclassical Schr\"{o}dinger's cat state. We characterize the dynamics and states of the system by analyzing the output field emitted by the oscillator and implementing quantum state tomography suited for nonlinear resonators. By demonstrating a quantum parametric oscillator and the requisite techniques for characterizing its quantum state, we set the groundwork for new schemes of quantum and classical information processing and extend the reach of these ubiquitous devices deep into the quantum regime
    corecore